

Welcome to Colorwheels!

ColorWheels - An Endless Color Generator

This project is a continuous color generator for Python. The idea is to continuously serve a sequence of colors to your application, in any desired format.

We use the package for easy color handling in our electronics projects on Raspberry Pi (RGB LEDs, RGB Panels and other). This doesn’t limit the use of course, use it anywhere you like!

[image: _images/keybow-colorwheels.gif]
The idea behind is an endless colorwheel for photographers - the wheel continuously turns around to generate the next color - and ideally, colors have a continuity when starting all over.

We have also bundled an easy configuration handling, via YAML files (see YAML Color Definitions). Define your color palettes and patterns in a script file and separate color definitions from code. Then re-use. Apart from standard color sequences, we’ve added color generators - as of this writing, Rainbow effect generators are available.

If you’re wondering how hard is to use colorwheels on a keybow (shown above), here’s the code snippet - this loop ensures a rainbow effect on a button, which awaits a keypress.

wheel is initialized and definitions loaded or generated
while True:
 color = wheel.next()
 keybow.set_led(9, color[0], color[1], color[2])
 keybow.show()
 time.sleep(0.1)

We have a small tutorial available as well. Go to the section Using Colorwheels to get started.

Getting Started

	Using Colorwheels
	Introduction

	Importing

	Using the generator

	Changing Color Type

	Switching colorwheels

	Where to next?

	Logging

	Color Handling
	Introduction

	Color Objects

	YAML Definition

	Colors in code

	Base Colors

	YAML Color Definitions
	Introduction

	Specification

Modules

	Colorwheels
	Introduction

	Specification

	ColorwheelsConfig
	Introduction

	Specification

	ColorItem
	Introduction

	Specification

	WheelItem
	Introduction

	Specification

Indices and tables

	Index

	Module Index

	Search Page

Using Colorwheels

Introduction

This is a getting started guide, on using Colorwheels modules. As mentioned in the introduction, a Colorwheels instance is an endless color sequence generator to drive changing colors in our RGB Led hardware.

Once you have covered the basics, check our tutorial page on Color Handling.

Importing

To import all colorwheels modules, simply add an import statement to your script.

import colorwheels

Using the generator

We’ll start using our generator with preset colors. Learn more in the next sections about changing colors and other features. For now, we’ll simply use default settings.

The pre-defined generator endlessly rotates red, green and blue. By default, it also returns these colors in an RGB tuple. You can however get colors in other formats as well.

A minimal generator code could look like this:

mywheels.py
#
Colorwheel Generator Example 1

import colorwheels

wheels = colorwheels.Colorwheels()

for i in range(5):
 print(next(wheels))

Your output can be similar to the below (note, if you log to console, there could be more output lines from the logger):

$ python mywheels.py
(255, 0, 0)
(0, 255, 0)
(0, 0, 255)
(255, 0, 0)
(0, 255, 0)
$

Similarly, you can invoke one of several ‘next’ methods directly. See below:

...
for i in range(5):
 print(wheels.next())

Changing Color Type

The object returns different data formats, based on a type setting. You can receive RGB, RGBA or hexadecimal values per each iteration.

The following example iterates colors with hexadecimal output.

mywheels.py
#
Colorwheel Generator Example 2

import colorwheels

wheels = colorwheels.Colorwheels()

set generator type ("rgb_tuple" or "rgba_tuple" or "hexadecimal")
wheels.set_generator_type("hexadecimal")

for i in range(5):
 print(next(wheels))

With the below output:

$ python mywheels.py
#ff0000
#00ff00
#0000ff
#ff0000
#00ff00
$

Check the next section to see how to work with colors: Color Handling

Switching colorwheels

You can switch palettes on the run. Below is a more complete example of real-life usage. Say you have a button with an RGB led, and you want to rotate a few red tints when button is pressed, otherwise animate a green palette, if released. The trick is in the activate_colorwheel method, which locates a wheel by name and activates it.

mywheels.py
#
Colorwheel Generator Example 3

import colorwheels
import time

wheels = colorwheels.Colorwheels()

load your color palettes here. For example 'reds' for red tints,
'greens' for green tints

def button_pressed(self):
 # do some logic here, return True or False
 return True

while(True):
 if button_pressed:
 wheels.activate_colorwheel("reds")
 else:
 wheels.active_wheel("greens")

 color = next(wheels)
 # apply color to button / LED etc.
 time.sleep(1)

Where to next?

There are other features where our generator will help you. Check the available functions of Colorwheels and ColorwheelsConfig, as well as the features in our color classes: ColorItem and WheelItem.

Below is an example of using a so far not-mentioned class method of WheelItem - wheel_complement: as you’ll find out in the documentation, the method copies over an existing wheel item and switches all colors to complementing colors. Comes in very useful for example, when you want to handle object colors with a well contrasting background.

mywheels.py
#
Colorwheel Generator Example 4

import colorwheels
import time

text_wheel = colorwheels.Colorwheels()
background_wheel = colorwheels.Colorwheels()

load your color palettes here. For example 'reds' for red tints,
'greens' for green tints. We're going to activate blue tints.

text_wheel.activate_colorwheel("blues")
background wheel generates a new palette 'blues_complement'
the palette is local (i.e. not stored in the config singleton)
background_wheel.active_wheel = colorwheels.WheelItem.wheel_complement(text_wheel.active_wheel)

while(True):
 text_color = next(text_wheel)
 background_color = next(background_wheel)
 # write your text with obtained colors
 time.sleep(1)

Logging

The package uses standard Python logging. Please configure according to your needs.

Color Handling

Introduction

The default color configuration comes with one RGB sequence as a default in the configuration file. You can import color sequences from a YAML definition file
as well, or you can define your own in code of course. This section describes how.

Get more details on crafting your YAML file in this tutorial section: YAML Color Definitions.

Color Objects

Colorwheels introduces 2 objects to handle color definitions: ColorItem, WheelItem for one specific color generator. The base class - Colorwheels - handles multiple generator defintions, and related operations: loading, swapping color schemes etc.

	ColorItem : this is a dataclass which captures RGB information, and handles color conversions. You can use it stand-alone, or you can use it in lists of colors. One of those special color lists is a ‘wheel_item’, described below.

	WheelItem : A wheel Item is a dataclass, which handles one named collection of colors. It contains a list of ColorItem objects and gives them a label. This is the base of one color definition.

YAML Definition

The easiest way to define colors is the code your own YAML file. We have a whole section dedicated to YAML, read more in YAML Color Definitions. You can also find an example color definition file in the examples directory.

Colors in code

You may want to add a color definitions to the pool of available colors (which is managed by ColorwheelsConfig). As soon as the color definition you create is added, it will be available to all Colorwheels instances.

A color definition is basically a list of colors (defined by the ColorItem dataclass) with a name attached. This is bundled in the WheelItem dataclass.

So, adding your own RGB sequence using code could look like this:

mywheels.py
#
Colorwheel Generator Example 4

from typing import List
import colorwheels

def my_rgb():
 """Create a list of colors (rgb)"""

 color_list = list()
 color_list.append(colorwheels.ColorItem(red=255, green=0, blue=0))
 color_list.append(colorwheels.ColorItem(red=0, green=255, blue=0))
 color_list.append(colorwheels.ColorItem(red=0, green=0, blue=255))

 return color_list

wheels = colorwheels.Colorwheels()
add my new list named 'myrgb' to common configurations ->
can be used by any other instance of Colorwheels
wheels.wheel_configurations.add_wheel_item(colorwheels.WheelItem("myrgb", my_rgb()))

Base Colors

Your application may depend on some base colors, not necessarily in a / any sequence. Colorwheels has you covered: you can invoke add_base_colors in ColorwheelsConfig and these colors will be available to you. The idea is, that the generator can serve only one color, again and again. In any format.

The add_base_colors method adds the following colors to your configuration file: ‘red’, ‘green’, ‘blue’, ‘cyan’, ‘magenta’, ‘yellow’, ‘black’, and ‘white’.

We use this feature not only for static basic colors, but also in solutions, where a background and foreground colorwheel are needed. For the foreground, we use a rotating Colorwheel based on the aesthetics of the solution, but for the background we start we a static color, say black. Now if we want to rotate both the foreground and background, we simply activate a different background. Neat hallucinogenous effects can be achieved, on the same color engine.

Base colors can be enforced by using the add_base_colors flag in load_wheels of ColorwheelsConfig, or when creating a new Colorwheels instance. In both cases, the default is set to True, so you’ll probably end-up having them in your color collection.

Tip: you may want to over-ride a base color setting for one reason or another. For example, if you want your specific flavor of ‘red’ instead of the default ‘(255,0,0)’, simply define it in your YAML configuration file; add_base_colors adds colors by name, only if they don’t exist yet.

YAML Color Definitions

Introduction

Defining a color sequence in code is tedious. Definining more sequences even more so. Our package depends on color definitions coming from a YAML file.

This page describes the structure of such a file.

Specification

One or more color definitions are located in a YAML file, defining color sequences used in your program.

YAML structure

The base YAML structure is as follows:

meta:
 release: "0.5.0.0"
wheels:
 - wheel:
 name: "white"
 colors:
 - rgb: [255, 255, 255]
 - wheel:
 name: "RGB"
 colors:
 - rgb: [255, 0, 0]
 - rgb: [0, 255, 0]
 - rgb: [0, 0, 255]
 ...

The structure contains 2 segments:

	meta - containing metadata about the file, version (for compatibility reasons) and similar. In the current release, this section is ignored.

	wheels - a list of different (named) colorwheels. Each colorwheel item is defined within a wheel section.

Wheel Definitions

Wheels can be represented in several ways, depending on the color effect we want to achieve. Generally, we have 2 types of wheel elements: listed, or calculated.

For example:

...
- wheel:
 name: "long-rainbow"
 type: "rainbow"
 size: 64
 amplitude: 127
 center: 128
 frequency: 0.3
- wheel:
 name: "RGB"
 type: "sequence" # default value, need not be specified
 colors:
 - rgb: [255, 0, 0]
 - rgb: [0, 255, 0]
 - rgb: [0, 0, 255]
...

Above, we can see a standard RGB sequence, plus a ‘calculated’ sequence from parameters. The differentiator is the type field. This field identifies what to do with parameters, and defaults to sequence.

If you load the above definition into Colorwheels (using the ColorwheelsConfig load_wheels method), there will be 2 named color wheels you can switch back and forth.

Wheel types

sequence

Sequence is the basic type of a wheel, and if not specified, this type becomes the default value. A ‘sequence’ contains a ‘colors’ list, where every list item is defined by it’s RGB elements.

Below a usage example:

...
- wheel:
 name: "RGB"
 type: "sequence" # default value, need not be specified
 colors:
 - rgb: [255, 0, 0]
 - rgb: [0, 255, 0]
 - rgb: [0, 0, 255]
...

rainbow

Rainbow is a generated wheel. You specify how many elements to use, plus some algorithm parameters. You can generate rainbow sequences without really looking into the detail of the implementation: just specify ‘size’ (i.e. number of colors) and leave the rest to defaults.

Below a rainbow wheel:

...
- wheel:
 name: "my-rainbow"
 type: "rainbow"
 size: 32 # default value, need not be specified
 amplitude: 127 # default value, need not be specified
 center: 128 # default value, need not be specified
 frequency: 0.3 # default value, need not be specified
...

Colorwheels

Introduction

A Color management module, containing the Colorwheel generator. As described in the code documentation, the idea of the colorwheel is to choose a sequence of colors, and, by using a next call, select the next color in the chain. Then start at the beginning again.

Our generator allows to multiple return types. You can tweak the return values by setting a generator_type to any one of those values: "rgb_tuple", "rgba_tuple", or "hexadecimal". If calling standard next methods, 3 are provided for each mentioned type of return value.

Specification

Colorwheels is a module to generate color sequences. A Colorwheels instance
contains multiple color wheel definitions and functions as a generator of color values
in multiple formats. You can activate any available colorwheel anytime, to obtain
different effects.

	
class colorwheels.colorwheels.Colorwheels(add_base_colors=True)

	Base class for returning color sequences.

We represent colors similar to Color Wheels in photography, i.e. a sequence
of colors is located on an imaginary wheel and endlessly served to applications
in a given sequence.

Colorwheels can be generated or loaded from a YAML file. See documentation and
examples.

	
__init__(add_base_colors=True)

	Create Colorwheels instance.

wheel configurations is a ColorwheelsConfig object (singleton), which
contains color definitions loaded from the environment, or generated
by code.

A default configuration object is created (or inherited from other
parts of the code).

	
activate_colorwheel(name)

	Activates colorwheel by name, from configuration file. Sets
active_wheel with new setting.

	Raises

	ValueError – Raises ValueError exception if name is not found

	
property active_colors

	Color list of active colorwheel.

Exposes the active colorwheels color list for easy iteration

	
property active_name

	Currently active colorwheel name

	
complement()

	Use own colors to create a compementing color palette.

Current colors are overwritten.

Tip: to synchronize two colorwheels, create complements before
using the generator(s)

See also

	rainbow
	You can also change the generator colors by creating a rainbow effect

	
next()

	Get the next color from the ColorWheel as an RGB tuple

	Returns

	RGB tuple of next selected color. The returned value is an integer
tuple representing a color, i.e. (r,g,b). Red would return (255,0,0)

	Return type

	tuple

See also

	next_rgba
	Get the next color from ColorWheel using RGBA

	next_hex
	Get the next color from ColorWheel as a hex string

	
next_hex()

	Get the next color from ColorWheel as a hex string

	Returns

	hex string representation of RGB color

	Return type

	string

See also

	next
	Get the next color from the ColorWheel as an RGB tuple

	next_rgba
	Get the next color from ColorWheel using RGBA

	
next_rgba(alpha=255)

	Get the next color from ColorWheel using RGBA

	Returns

	RGB tuple of next selected color. The returned value is an integer
tuple representing a color, i.e. (r,g,b,a). Red would return
(255,0,0,255) if alpha is default at 255

	Return type

	tuple

See also

	next
	Get the next color from the ColorWheel as an RGB tuple

	next_hex
	Get the next color from ColorWheel as a hex string

	
rainbow(size)

	Generate rainbow color palette, using defaults.

Current colors are overwritten. A new, suitable name is generated.

Tip: to generate rainbow effects with more options, use the related
rainbow class method from wheel_item

	Parameters

	size – number of rainbow colors to be generated

See also

	complement
	You can also change the generator colors by replacing current colors with complementing colors

	
set_generator_type(new_type)

	Set the generator type to a value out of generator_types.

	Raises

	ValueError – Raises ValueError exception if new_type is not avaialble

	
property wheel_configurations

	Returns the configuration object ColorwheelsConfig,
used by Colorwheels

You can manage the configurations from any Colorwheels instance used
in your program. Handle with care! The configurator is a singleton, i.e.
if you for example load a different set of colors, all running
generators will be affected.

ColorwheelsConfig

Introduction

ColorWheelConfig is a configuration helper for Colorwheels

Specification

ColorwheelsConfig is a configuration helper for Colorwheels, implemented
as a singleton.

The helper loads a configuration YAML file and serves the colors by name to
a Colorwheels generator.

	
class colorwheels.colorwheels_config.ColorwheelsConfig(*args, **kwargs)

	Configuration helper for Colorwheels.

	
__init__()

	Initialize configuration helper for Colorwheels.

The constructor creates the most simple configuration, and we expect
a configuration file to be loaded later by code.

The initial wheel available is a primitive with ‘red’, ‘green’, ‘blue’,
under the wheel name ‘default’. This is equivalent to an RGB
definition.

	
add_base_colors()

	This method adds base colors to the list of available colors in
colorwheels, to ensure availability of often used colors.

These simple color sequences have only one color available, so running
the generator returns the same color all over again. It can come in
handy for example, if you have 2 colorwheels for foreground/background,
and want to have the background defaulting to black only ….

The method adds the following one-color named wheels:

‘red’, ‘green’, ‘blue’, ‘cyan’, ‘magenta’, ‘yellow’, ‘black’, ‘white’

	
add_wheel_item(item)

	Adds a WheelItem to definitions list.

	Parameters

	item – A WheelItem object, which should be added to global
configurations

	Raises

	ValueError – Raises error if item name already exists

	
create_wheel_item(name, colors)

	Create a WheelItem from parts. Function returns the created item

	Parameters

	
	name – Name your new WheelItem

	colors – Supply a list of of ColorItem color objects

	
find_wheel(name)

	Find wheelitem by name. None if not found

	
property first_wheel

	Get the first wheel available

	
load_wheels(filename, add_base_colors=True)

	loads YAML color definition file. The loaded file is converted to a list of
WheelItem objects.

When loading a new definition from YAML, make sure colorwheels activates whatever wheel
is required!

	Parameters

	filename (filename of file containing color definitions in YAML format. See) – YAML Color Definitions for more details

	Raises

	
	FileNotFoundError: – If file is not found on system

	YAMLError: – If file is a wrongly formatted YAML file

	
property wheel_names

	Return list of wheel names available in configuration

ColorItem

Introduction

We keep color information and color logic together. ColorItem is a dataclass to simplify handling of color elements (RGB and others).

The class keeps native information about the RGB parts in dedicated fields. It can represent a color in one of the formats listed below.

	RGB - ColorItem instance: this is the native representation of a color

	RGB - tuple: You can retrieve color information as an RGB tuple. A red would become (255, 0, 0)

	RGB - normalized tuple: a color in some systems has to be represented by float values from 0 to 1. The normalized tuple can represent this. The red example would look as follows: (1.0, 0.0, 0.0)

	RGBA - tuple: PIL and others sometimes work with RGBA tuples. The color information is enriched with the Alpha information, in this release hardcoded as ‘255’. Our red would be represented as (255, 0, 0, 255)

	RGB hexadecimal: the color can be sent as an RGB hexadecimal string.

A few conversion color methods are bundled together with color information.

Specification

ColorItem is a dataclass containing one Color definition and color converters.

The object contains the following values:

	red: red component of color (integer)

	green: green component of color (integer)

	blue: blue component of color (integer)

Further, color format conversions - in between RGB, RGBA (integer representation)
and float representations - are provided.

	
class colorwheels.color_item.ColorItem(red: int, green: int, blue: int)

	Color object (dataclass) for easy color handling.

	Parameters

	
	red (int) – red color component. The native format is an integer 0-255

	green (int) – green color component. The native format is an integer 0-255

	blue (int) – blue color component. The native format is an integer 0-255

	
property color

	The color property return color as tuple.

	Returns

	A tuple of 3 elements, red, green, blue. A red is returned
as (255, 0, 0)

	Return type

	tuple

	
property color_hex

	Return hexadecimal representation of color.

	Returns

	Hexadecimal coded string. A red is returned as #ff0000

	Return type

	str

	
property complement

	Return complement (opposite) color tuple.

	Returns

	Finds a complementing color to current, and returns it as a tuple.
Our example red color - (255, 0, 0) is complemented by
(0, 255, 255) - cyan.

	Return type

	tuple

	
from_float(colrgb)

	Convert a float RGB tuple the native format (int tuple)

This method comes in handy, if you use libraries like ‘Colour’ in your
code.

The Colour library uses RGB float values, encoded in tuples ranging
from 0.0-1.0. We convert these values to an int tuple, i.e. int values
ranging from 0-255

WheelItem

Introduction

WheelItem is a dataclass to simplify handling of colorwheel definitions. The structure of data closely mirrors YAML definition file(s) used to define colors.

A Wheel Item simply contains a named RGB color sequence.

Naming the sequence is used for easy switching of colorwheels, while the list of colors is a list of ColorItem objects. See ColorItem for more information.

Specification

WheelItem: a dataclass containing one ColorWheel definition

The object contains the following values:

	name: ColorWheel name. The name is used to retrieve a named color sequence

	colors: List of ColorItem colors

WheelItem encapsulates a colorwheel selection and is used internally by
colorwheels.

	
class colorwheels.wheel_item.WheelItem(name: str, colors: List[colorwheels.color_item.ColorItem])

	Content of one colorwheel

	
classmethod complement_wheel_item(reference_wheel, name='')

	Use the reference wheel to create a similar, but color complementing
wheel item.

If no name is provided, uses original name with the ‘_complement’ suffix

	
from_float_list(color_list)

	Convert a list of float RGB tuples to native format

This method comes in handy, if you use libraries like ‘Colour’ in your
code.

The Colour library uses RGB float values, encoded in tuples ranging
from 0.0-1.0. We convert these values to an int tuple, i.e. int values
ranging from 0-255

	Parameters

	color_list – A list of colors in float format(0.0-1.0 for each segment)

	
generate_rainbow(size, amplitude, center, frequency)

	Generate colors with a Rainbow palette. Overwrites colors list.

Uses a simplified algorithm.

Tip: If you don’t wish to experiment with the algorithm, you can
decide on the rainbow size (number of colors), and use these values
as a starting point:

amplitude=127, center=128, frequency=0.3

	
property is_single_color

	Indicates, if color list contains only one color

	
classmethod rainbow_wheel_item(name, size, amplitude=127, center=128, frequency=0.3)

	Generate a wheel item with a Rainbow palette. Provides some sensible
defaults.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 colorwheels	

 	
 	
 colorwheels.color_item	

 	
 	
 colorwheels.colorwheels	

 	
 	
 colorwheels.colorwheels_config	

 	
 	
 colorwheels.wheel_item	

Index

 _
 | A
 | C
 | F
 | G
 | I
 | L
 | M
 | N
 | R
 | S
 | W

_

 	
 	__init__() (colorwheels.colorwheels.Colorwheels method)

 	(colorwheels.colorwheels_config.ColorwheelsConfig method)

A

 	
 	activate_colorwheel() (colorwheels.colorwheels.Colorwheels method)

 	active_colors (colorwheels.colorwheels.Colorwheels property)

 	
 	active_name (colorwheels.colorwheels.Colorwheels property)

 	add_base_colors() (colorwheels.colorwheels_config.ColorwheelsConfig method)

 	add_wheel_item() (colorwheels.colorwheels_config.ColorwheelsConfig method)

C

 	
 	color (colorwheels.color_item.ColorItem property)

 	color_hex (colorwheels.color_item.ColorItem property)

 	ColorItem (class in colorwheels.color_item)

 	Colorwheels (class in colorwheels.colorwheels)

 	
 colorwheels.color_item

 	module

 	
 colorwheels.colorwheels

 	module

 	
 	
 colorwheels.colorwheels_config

 	module

 	
 colorwheels.wheel_item

 	module

 	ColorwheelsConfig (class in colorwheels.colorwheels_config)

 	complement (colorwheels.color_item.ColorItem property)

 	complement() (colorwheels.colorwheels.Colorwheels method)

 	complement_wheel_item() (colorwheels.wheel_item.WheelItem class method)

 	create_wheel_item() (colorwheels.colorwheels_config.ColorwheelsConfig method)

F

 	
 	find_wheel() (colorwheels.colorwheels_config.ColorwheelsConfig method)

 	first_wheel (colorwheels.colorwheels_config.ColorwheelsConfig property)

 	
 	from_float() (colorwheels.color_item.ColorItem method)

 	from_float_list() (colorwheels.wheel_item.WheelItem method)

G

 	
 	generate_rainbow() (colorwheels.wheel_item.WheelItem method)

I

 	
 	is_single_color (colorwheels.wheel_item.WheelItem property)

L

 	
 	load_wheels() (colorwheels.colorwheels_config.ColorwheelsConfig method)

M

 	
 	
 module

 	colorwheels.color_item

 	colorwheels.colorwheels

 	colorwheels.colorwheels_config

 	colorwheels.wheel_item

N

 	
 	next() (colorwheels.colorwheels.Colorwheels method)

 	
 	next_hex() (colorwheels.colorwheels.Colorwheels method)

 	next_rgba() (colorwheels.colorwheels.Colorwheels method)

R

 	
 	rainbow() (colorwheels.colorwheels.Colorwheels method)

 	
 	rainbow_wheel_item() (colorwheels.wheel_item.WheelItem class method)

S

 	
 	set_generator_type() (colorwheels.colorwheels.Colorwheels method)

W

 	
 	wheel_configurations (colorwheels.colorwheels.Colorwheels property)

 	
 	wheel_names (colorwheels.colorwheels_config.ColorwheelsConfig property)

 	WheelItem (class in colorwheels.wheel_item)

 nav.xhtml

 Table of Contents

 		
 Welcome to Colorwheels!

 		
 Using Colorwheels

 		
 Introduction

 		
 Importing

 		
 Using the generator

 		
 Changing Color Type

 		
 Switching colorwheels

 		
 Where to next?

 		
 Logging

 		
 Color Handling

 		
 Introduction

 		
 Color Objects

 		
 YAML Definition

 		
 Colors in code

 		
 Base Colors

 		
 YAML Color Definitions

 		
 Introduction

 		
 Specification

 		
 YAML structure

 		
 Wheel Definitions

 		
 Wheel types

 		
 Colorwheels

 		
 Introduction

 		
 Specification

 		
 ColorwheelsConfig

 		
 Introduction

 		
 Specification

 		
 ColorItem

 		
 Introduction

 		
 Specification

 		
 WheelItem

 		
 Introduction

 		
 Specification

_static/file.png

_images/keybow-colorwheels.gif

_static/minus.png

_static/plus.png

